Search
Use the search bar or filters below to find any TAPPI product or publication.
Filters
Content Type
Publications
Level of Knowledge
Committees
Collections
Journal articles
Magazine articles
Editorial: Seshadri Ramkumar: Nonwovens specialist and TTU professor joins TJ Editorial Board, TAPPI Journal October 2021
ABSTRACT: TAPPI and the TAPPI JOURNAL (TJ) editorial staff would like to welcome a new member to the TJ Editorial Board, Seshadri “Ram” Ramkumar, Ph.D., a professor in the Department of Environmental Toxicology at Texas Tech University (TTU) in Lubbock, TX. Readers will be familiar with Ram as a frequent contributor of guest editorials in TAPPI Journal on the topic of nonwovens.
Journal articles
Magazine articles
Control of malodorous gases emission from wet-end white water with hydrogen peroxide, TAPPI Journal October 2021
ABSTRACT: White water is highly recycled in the papermaking process so that its quality is easily deteriorated, thus producing lots of malodorous gases that are extremely harmful to human health and the environment. In this paper, the effect of hydrogen peroxide (H2O2) on the control of malodorous gases released from white water was investigated. The results showed that the released amount of total volatile organic compounds (TVOC) decreased gradually with the increase of H2O2 dosage. Specifically, the TVOC emission reached the minimum as the H2O2 dosage was 1.5 mmol/L, and meanwhile, the hydrogen sulfide (H2S) and ammonia (NH3) were almost completely removed. It was also found that pH had little effect on the release of TVOC as H2O2 was added, but it evidently affect-ed the release of H2S and NH3. When the pH value of the white water was changed to 4.0 or 9.0, the emission of TVOC decreased slightly, while both H2S and NH3 were completely removed in both cases. The ferrous ions (Fe2+) and the copper ions (Cu2+) were found to promote the generation of hydroxyl radicals (HOœ) out of H2O2, enhancing its inhibition on the release of malodorous gases from white water. The Fe2+/H2O2 system and Cu2+/H2O2 system exhibited similar efficiency in inhibiting the TVOC releasing, whereas the Cu2+/H2O2 system showed better perfor-mance in removing H2S and NH3.
Journal articles
Magazine articles
Editorial: ”Didn’t know we knew that” • Rediscovering the fundamentals, TAPPI Journal April 2022
ABSTRACT: Access to today’s extensive electronic information archives is certainly an amazing feat of technology. Nonetheless, it can sometimes be difficult to find pulp and paper industry process-specific resources that are easily digestible and tailored to help us in our day-to-day work.
Journal articles
Magazine articles
Ultrastructural Behavior of Cell Wall Polysaxxharides, TAPPI Journal April 2022
ABSTRACT: Considerable information on the ultrastructural organization of the plant cell wall and the supermolecular arragement of the cell wall components, in particular of cellulose, has been obtained with the electron microscope.
Journal articles
Magazine articles
Furnishing autohydrolyzed poplar weakly alkaline P-RC APMP to make lightweight coated base paper, TAPPI Journal February 2022
ABSTRACT: This work investigated the effects of autohydrolysis pretreatment severity on poplar (Populus tomentosa Carr.) woodchips used to make a type of high-yield pulp (HYP) known as preconditioning followed by refiner chemical treatment, alkaline peroxide mechanical pulp (P-RC APMP). It also investigated the ratios for partially replacing sodium hydroxide (NaOH) with magnesium oxide (MgO) in the high-consistency (HC) retention stage of the P-RC APMP process on the obtained HYP’s properties. The results show that the pretreatment severity of autohydrolysis at combined hydrolysis factor (CHF) = 10.77 and the 50 wt% ratio for partially substituting NaOH with MgO were the optimum conditions for making light-weight coated (LWC) base paper. Compared to the conventional P-RC APMP, the optimized P-RC APMP had similar bulk and higher tensile, burst, and tear indices, as well as opacity, but a slightly lower ISO brightness. When the optimized P-RC APMP and commercial softwood bleached sulfate pulp (SBKP) were blended to make LWC base paper, the most favorable pulp furnish was comprised of 50% optimized P-RC APMP and 50% commercial SBKP. The obtained LWC base paper handsheet had better bulk, and its other properties could also meet the require-ments of LWC base paper.
Journal articles
Magazine articles
Editorial: Looking forward, looking back, TAPPI Journal January 2022
ABSTRACT: Much like 2020, 2021 was another year of remarkable highs and lows delivered by the COVID-19 pandemic. Vaccines, variants, and infection surges altered the way we behaved personally and professionally last year. As we move into 2022, we are now grappling with health and business concerns from the omicron variant that has overwhelmed hospitals in some areas and contributed to a global supply chain crisis. The ability to adjust has once again become a key skill in adapting to our shifting “new normal.”
Journal articles
Mechanical testing of thin film nanocellulose composites using buckling mechanics, TAPPI JOURNAL April 2013
Mechanical testing of thin film nanocellulose composites using buckling mechanics, TAPPI JOURNAL April 2013
Journal articles
Economics of coated paper production made from deinked pulp, TAPPI JOURNAL April 2013
Economics of coated paper production made from deinked pulp, TAPPI JOURNAL April 2013
Journal articles
Magazine articles
Kraft pulp viscosity as a predictor of paper strength: Its uses and abuses, TAPPI Journal October 2023
ABSTRACT: For bleached kraft pulps, two factors govern paper strength: the individual fiber strength, and the bond strength that adheres the individual fibers together in the paper matrix. Inherent fiber strength is related to the length of the carbohydrate polymers, also known as the degree of polymerization (DP). Average DP (DP) is inferred by performing pulp viscosity measurements. Under certain circumstances during kraft pulping and bleaching, the average polymer lengths can be shortened, resulting in lower pulp viscosity, and may indicate fiber damage. Fiber damage typically manifests itself as a reduction in tear strength for well-bonded handsheets.This paper will review the literature on how pulp viscosity can predict paper/fiber strength and how it can be used as a diagnostic tool. It can be a means to monitor pulp quality during pulping and bleaching, as well as to alert when such operations approach a critical threshold. However, viscosity losses must be carefully and judiciously analyzed. Like most diagnostic tools, viscosity measurements can be misused and abused, which can lead to incorrect inferences about intrinsic fiber strength. This review will also cover these misuses. The overall goal is to provide the papermaker a better understanding of what pulp viscosity is, how it correlates to potential sheet strength, and what its limitations are. It will be illustrated that when pulp viscosity drops below a critical value, it will indicate an appreciable deterioration in the paper’s tear and tensile strength.
Journal articles
Magazine articles
Filtration efficiency and breathability of selected face masks, TAPPI Journal September 2023
ABSTRACT: Face masks have been used as physical barriers to stop respiratory infections for many years. Due to insufficient and low supply of certified masks, alternative face covers such as face shields, neck gaiters, and fabric reusable masks gained attention during the COVID-19 pandemic. However, for these alternate face masks to fulfill their intended function, they must be effective. Additionally, the level of breathability provided by the makeshift masks must be at a certain level. The work reported in this paper was carried out to determine the relationship between filtration efficiency (FE), breathability, and important physical characteristics of mask substrates. The fiber diameter of the core filter layer was determined using a scanning electron microscope. Five types of face masks (two types of N95, two types of surgical masks, and a 100% knitted cotton fabric) were tested for their FE and breathability using moisture vapor transmission rate (MVTR). The cotton knitted mask had the lowest FE (5.10%•26.47%), while the National Institute for Occupational Safety and Health (NIOSH)-certified N95 mask had the highest FE values (92.10%•99.65%). However, the cotton mask outperformed the N95 in terms of the pressure drop, meaning higher comfort. In general, the N95 face mask provided the best protection against aerosolized particles. According to the regression analysis, the fiber diameter of the mask filter substrate serves as an important predictor of FE of mask substrates. In this study, it was confirmed that fiber diameter is inversely related to the filtration ability. Results show that compact structure with finer fibers will enable higher filtration efficiency. The study lends itself to developing layered face masks to obtain optimum filters with good filtration, better fit, and acceptable comfort for the wearer.