Search

Use the search bar or filters below to find any TAPPI product or publication.

Showing 31–40 of 36 results (Duration : 0.007 seconds)
Journal articles
Magazine articles
Open Access
From biorefineries to bioproducts: conversion of pretreated pulp from biorefining streams to lignocellullose nanofibers, TAPPI Journal April 2019

ABSTRACT: This study investigates the use of pretreatment and enzymatic hydrolysis side streams and conver-sion to lignocellulose nanofibers. We used a steam-exploded and partial enzymatic hydrolyzed hardwood pulp and an organosolv pretreated softwood pulp to prepare lignocellulose nanofibers (LCNF) via microfluidization. The ener-gies applied on fibrillation were estimated to examine the energy consumption levels of LCNF production. The ener-gy consumptions of the fibrillation processes of the hardwood LCNF production and the softwood LCNF production were about 7040-14080 kWh/ton and 4640 kWh/ton on a dry material basis, respectively. The morphology and dimension of developed hardwood and softwood LCNFs and the stability and rheological behavior of their suspen-sions were investigated and are discussed.

Journal articles
Magazine articles
Open Access
In-situ green synthesis and adsorption on methylene blue of copper-based metal organic framework/cellulose/chitosan (CCTSA/HKUST-1) composite aerogel, TAPPI Journal October 2024

ABSTRACT: In order to explore the application of metal-organic frameworks (MOFs) in environmental and water treatment fields, a new composite aerogel of HKUST-1/cellulose/chitosan (CCTSA/HKUST-1) with better hydrostability was synthesized by an in-situ synthesis method combining covalent cross-linking and solvothermal methods as an efficient adsorbent for methylene blue (MB). The composite aerogel (CCTSA) obtained by covalent cross-linking of cellulose (CE) and chitosan (CTS) exhibited excellent stability under strong acid and solvent-thermal conditions. With the increase of CTS content, it was beneficial to the in-situ synthesis of HKUST-1, as well as to increase the mass loading rate of HKUST-1 to 37.06%, while the Brunauer-Emmett-Teller (BET) specific surface area of CCTSA/HKUST-1 composite aerogel reached 945.123 m2·g-1, which was much higher than that of the CCTSA composite aerogel (14.489 m2·g-1). The CCTSA/ HKUST-1 composite aerogel exhibited excellent adsorption capacity (537.6 mg·g-1) on MB solution, and cyclic adsorption could be achieved. This study proposes a concept of valorization of alkaline peroxide mechanical pulping (APMP) waste liquor to hemicellulose-based hydrogel. This hemicellulose-based hydrogel exhibits a sensitive temperature/pH dual response. Hemicellulose-based hydrogels swell or shrink through the change of hydrogen bond/electrostatic repulsion/charge screening. They also show good water absorption and water retention properties.

Journal articles
Magazine articles
Open Access
Papermaking properties of bacterial nanocellulose produced from mother of vinegar, a waste product after classical vinegar production, TAPPI Journal April 2020

ABSTRACT: Bacterial nanocellulose (BNC) has gained a lot of attention in recent years due to its nano-size-derived properties. Although it is essentially chemically similar to plant-derived cellulose, it has smaller size and is enriched in free hydroxyl groups, which greatly improve mechanical properties of reinforced paper. However, although BNC has some unique features, it comes at a high price. In this paper, we introduce a new solution for BNC production. We have isolated bacterial nanocellulose directly from agro-industrial waste—mother of vinegar—and used it in the production of paper sheets. We show here that paper sheets made with the addition of only 10% bacterial nanocellulose from mother of vinegar substantially improved basic mechanical as well as printing properties of paper.

Journal articles
Magazine articles
Open Access
Effects of different ammonium lignosulfonate contents on the crystallization, rheological behaviors, and thermal and mechanical properties of ethylene propylene diene monomer/polypropylene/ammonium lignosulfonate composites, TAPPI Journal January 2020

ABSTRACT: Thermoplastic elastomer (TPE), made from ethylene propylene diene monomer (EPDM) and polypropylene (PP) based on reactive blending, has an excellent processing performance and characteristics and a wide range of applications. However, there are currently no reports in the literature regarding the usage of TPE in making composite boards. In this paper, EPDM, PP, and ammonium lignosulfonate (AL) were used as the raw materials, polyethylene wax was used as the plasticizer, and a dicumyl peroxide vulcanization system with dynamic vulcanization was used to make a new kind of composite material. This research studied the influences of the AL contents on the crystallization behaviors, rheological properties, thermal properties, and mechanical properties of the composites. The results showed that the AL content had a noticeable impact on the performance of the composite board. Accordingly, this kind of composite material can be used as an elastomer material for the core layer of laminated flooring.

Journal articles
Magazine articles
Open Access
Controlling porosity and density of nanocellulose aerogels for superhydrophobic light materials, TAPPI JOURNAL March 2018

Controlling porosity and density of nanocellulose aerogels for superhydrophobic light materials, TAPPI JOURNAL March 2018

Journal articles
Magazine articles
Open Access
Novel thin functional coatings for paper by foam coating, T

Novel thin functional coatings for paper by foam coating, TAPPI JOURNAL April 2017