Search
Use the search bar or filters below to find any TAPPI product or publication.
Filters
Content Type
Publications
Level of Knowledge
Collections
Journal articles
Magazine articles
Compression refining: the future of refining? Application to Nordic bleached softwood kraft pulp, TAPPI Journal August 2024
ABSTRACT: A new compression refining technology based on the kneading of high consistency pulp has been selected and tested in various conditions with a model Nordic bleached softwood kraft (NBSK) pulp. The method uses a kneader mixer referred to as the ultra continuous mixer (UCM) to condition the pulp. Its performance levels were also compared with those obtained with traditional low consistency (LC) refining of the same pulp.Compression refining of the NBSK pulp with the UCM led to a much better °SR/strength compromise than conventional LC refining. High strength properties can also be achieved by compression refining, in a range similar to/or better than LC refining. The higher the strength required, the greater the advantages of this technology: for a given strength, a difference of up to 10°SR can be obtained as compared to LC refined pulp. Moreover, a higher tear index can be obtained with compression refining, since fiber cutting is greatly reduced.The lower °SR is due to the release of fewer cellulosic fines, which also results in the manufacturing of new papers combining a high strength and a high permeability that cannot be obtained with traditional LC refining. Indeed, with LC refining, a high strength is generally associated with a low permeability. Upscaling this technology seems to be possible since large production devices are already on the market for applications other than paper/pulp. With this new pulp behavior, papermakers will have to learn to think differently, as paper strength and °SR can now be decorrelated.
Journal articles
Magazine articles
Editorial: TAPPI Journal Best Research Paper for 2023 focuses on black liquor concentration using graphene oxide membranes, TAPPI Journal February 2024
ABSTRACT: TAPPI and the TAPPI Journal (TJ) Editorial Board would like congratulate the authors of the 2023 TAPPI Journal Best Research Paper Award and Honghi Tran Prize: Sam Rae, Ella V. Richards, Max Kleiman-Lynch, Brent D. Keller, and Brandon I. Macdonald. Their paper, “Pilot scale black liquor concentration using pressure driven membrane separation,” appeared on p. 223 of the April 2023 issue. This kraft recovery cycle research was recognized by the TAPPI Journal Editorial Board for its innovation, creativity, scientific merit, and clear expression of ideas.
Journal articles
Magazine articles
Editoral: Investing in the future: Writing and peer-reviewing for TAPPI Journal, TAPPI Journal July 2024
ABSTRACT: Those who actively participate in TAPPI realize how much there is to gain from the networking, educational resources, career development, and other opportunities that come with this involvement. One important opportunity is the ability to share your work and expertise with others in your field, and an excellent way to do this is by taking part in the TAPPI Journal peer-review process, either as an author or a reviewer or both.
Journal articles
Magazine articles
Effects of varying total titratable alkali and causticizing efficiency targets on kraft pulp mill productivity, TAPPI Journal March 2024
ABSTRACT: The kraft mill causticizing area is often overlooked and undervalued when it comes to mill optimization; however, the operation of the causticizing plant has downstream effects on the entire liquor cycle. Setting the right targets for the causticizing plant can have a tremendous effect on mill operating costs, as well as push the production bottleneck from one unit operation to another. The key performance parameters associated with the causticizing plant itself are liquor total titratable alkali (TTA) and causticizing efficiency. Individual facilities choose their TTA and causticizing efficiency targets based on their goals, the limits of their equipment, and past experiences. This gives a variety of operating strategies in practice, but what are the implications for optimizing total titratable alkali and causticizing efficiency, and what level of optimization can be achieved through implementation of modern technology? This paper reviews the results of several different operational strategies and models the effects of these different approaches on kraft mill liquor cycle.
Journal articles
Magazine articles
Utilization of Areca leaf residues for sustainable production of greyboard, TAPPI Journal May 2024
ABSTRACT: This study primarily focused on the production of greyboard using waste materials from small scale industries, and specifically using Areca leaf waste fibers as a sustainable and environmentally friendly resource. Areca leaf waste fibers were employed as the primary raw material for greyboard manufacturing. The resulting greyboard exhibited commendable properties, including a tear index of 7.53 mN·m2/g, tensile index of 18.34·N·m/g (i.e., breaking length of 1870 m), burst factor of 9.24 (gf/cm2)/(g/m2) and stiffness factor of 33.1. This greyboard was created through a series of steps, including hydrothermal treatment of the material at 155°C and mechanical pulping refinement. The produced greyboard met the specifications outlined in the Indian Standard 2617 (1967) for greyboard. The key objective of this work was to leverage agricultural waste resources to develop a chemical-free greyboard, resulting in reduced waste disposal in open fields and a decrease in chemical usage within the greyboard manufacturing industry. Various characterization techniques, including field emission scanning electron microscopy (FE-SEM), attenuated total reflection•Fourier transform infrared (ATR-FTIR) analysis, and X-ray diffraction (XRD), were used to assess the fiber quality, including aspects such as functional groups, morphology, and crystallinity for the materials used in the manufacturing process.
Journal articles
Magazine articles
On the usage of online fiber measurements for predicting bleached eucalyptus kraft pulp tensile index — an industrial case, TAPPI Journal July 2022
ABSTRACT: Cellulose pulp’s physical-mechanical properties are determined by laboratory tests obtained from prepared handsheets. However, this procedure is time intensive and presents a lead time until the results are available, hindering its utilization for monitoring and decision-making in a pulp mill. In this context, developing real-time solutions for physical-mechanical properties prediction is fundamental. This work applied a mathematical modeling approach to develop a soft sensor for tensile index monitoring. The mathematical model considers online morphology measurements obtained from the last bleaching stage outlet stream and important process variables for tensile index prediction. The results obtained are satisfactory compared to laboratory results, presenting a mean absolute percentual error of 2.5%, which agrees with the laboratory testing method’s reproducibility.
Journal articles
Magazine articles
Investigation of the Cellulose-Water Relationship by the Pressure Plate Method, TAPPI Journal July 2022
ABSTRACT: The swelling and water retention properties of pulp fibers are of basic importance in papermaking.
Journal articles
Magazine articles
Editor's Note: Recovery Boiler Insights, TAPPI JOURNAL Febru
Editor's Note: Recovery Boiler Insights, TAPPI JOURNAL February 2010
Magazine articles
The industry: beyond 2000, TAPPI JOURNAL, October 1998, Vol.81(10)
The industry: beyond 2000, TAPPI JOURNAL, October 1998, Vol.81(10)
Magazine articles
Advanced controls reduce recovery boiler emissions and increase throughput at mead, escanaba, TAPPI JOURNAL, September 1992, Vol. 75(9)
Advanced controls reduce recovery boiler emissions and increase throughput at mead, escanaba, TAPPI JOURNAL, September 1992, Vol. 75(9)