Search
Use the search bar or filters below to find any TAPPI product or publication.
Filters
Content Type
Publications
Level of Knowledge
Committees
Collections
Journal articles
Application of AI-based approach to control the papermaking process, TAPPI Journal March 2025
ABSTRACT: This paper explores AI’s role in revolutionizing the pulp and paper industry, and specifically in predicting wet tensile strength (WTS) for specialty-grade papers. Leveraging eLIXA technology, a 90-day study achieved a 15% reduction in chemical dosage and an 80% decrease in wet tensile standard deviation. The real-time dosage prediction led to optimizing the wet strength resin (WSR) consumption and improved process reliability. The self-learning models exhibited adaptability to changing variables, ensuring their robustness. Overall, this study highlights AI’s transformative impact on efficiency, cost savings, and product quality within the dynamic landscape of papermaking. The approach used for wet strength optimization has been used to optimize other aspects of pulp and paper production.
Journal articles
Magazine articles
Continuous digester rapid thinning, TAPPI Journal June 2024
ABSTRACT: Carbon steel continuous digesters built after the early 1980s are fully stress relieved, so stress corrosion cracking has been less of a concern. However, these newer digesters were designed to run modified cooking processes that have turned out to be much more corrosive than those running with conventional cooking. This corrosion is mainly associated with softwood digesters and appears to be flow related. Average corrosion rates of 40 mil/year are possible on the exposed shell between the wash and extraction screens. The corrosion patterns are visually distinct from surfaces in the upper digester and below the wash screens. This paper goes into practical detail on where it occurs, the causes, visual identification, inspection planning and results evaluation, and finally, how to mitigate this damage, which consists of applying a corrosion resistant barrier. Some discussion on dealing with general corrosion throughout the digester is included.
Filtration efficiency and breathability of selected face masks, TAPPI Journal September 2023
ABSTRACT: Face masks have been used as physical barriers to stop respiratory infections for many years. Due to insufficient and low supply of certified masks, alternative face covers such as face shields, neck gaiters, and fabric reusable masks gained attention during the COVID-19 pandemic. However, for these alternate face masks to fulfill their intended function, they must be effective. Additionally, the level of breathability provided by the makeshift masks must be at a certain level. The work reported in this paper was carried out to determine the relationship between filtration efficiency (FE), breathability, and important physical characteristics of mask substrates. The fiber diameter of the core filter layer was determined using a scanning electron microscope. Five types of face masks (two types of N95, two types of surgical masks, and a 100% knitted cotton fabric) were tested for their FE and breathability using moisture vapor transmission rate (MVTR). The cotton knitted mask had the lowest FE (5.10%•26.47%), while the National Institute for Occupational Safety and Health (NIOSH)-certified N95 mask had the highest FE values (92.10%•99.65%). However, the cotton mask outperformed the N95 in terms of the pressure drop, meaning higher comfort. In general, the N95 face mask provided the best protection against aerosolized particles. According to the regression analysis, the fiber diameter of the mask filter substrate serves as an important predictor of FE of mask substrates. In this study, it was confirmed that fiber diameter is inversely related to the filtration ability. Results show that compact structure with finer fibers will enable higher filtration efficiency. The study lends itself to developing layered face masks to obtain optimum filters with good filtration, better fit, and acceptable comfort for the wearer.
Effect of fly ash-based calcium silicate on physical properties of cardboard paper, TAPPI Journal July 2023
ABSTRACT: This work reported the possibility of using fly ash-based calcium silicate (FACS) as filler for papermaking and waste fiber to synthesize cardboard paper. The adverse effects of FACS filler on paper strength were improved by using cationic starch modification, surface size, and interlayer-filled technology. Physical property tests indicated that the increase of filler content leads to a decrease in paper strength and an increase in bulk, but at the same content, the strength properties of paper modified by cationic starch were significantly improved, and the absorption resistance was lower. The paper had better absorption resistance than the original FACS paper after surface size. In addition, the absorption resistance and strength of the interlayer filling paper were better than the original FACS-filled paper, and the absorption resistance was the best. The results support the potential use of FACS as a low-cost filler for cardboard paper production.
Setting priorities in CNF particle size measurement: What is needed vs. what is feasible, TAPPI Journal February 2023
ABSTRACT: Measuring the size of cellulose nanomaterials can be challenging, especially in the case of branched and entangled cellulose nanofibrils (CNFs). The International Organization for Standardization, Technical Committee 6, Task Group 1—Cellulosic Nanomaterials, is exploring opportunities to develop standard methods for the measurement of CNF particle size and particle size distribution. This paper presents a summary of the available measuring techniques, responses from a survey on the measurement needs of CNF companies and researchers, and outcomes from an international workshop on cellulose nanofibril measurement and standardization. Standardization needs differed among groups, with Japanese companies mostly requiring measurements for product specification and production control, and other companies mostly needing measurements for safety/regulatory purposes and for grade definitions in patents. Among all the companies, average length and width with percen-tiles (D(10), D(50), D(90)) were the most desired measurands. Workshop participants concurred that defining the location(s) on the CNF at which to measure the width and the length is an urgent and complex question. They also agreed that methods are needed for rapid particle size measurement at the nanoscale. Our recommendation within ISO is to start work to revise the definition of CNFs and develop sample preparation and measurement guidelines. It was also recommended that further research be done to reproducibly prepare hierarchical branched CNF structures and characterize them, develop automated image analysis for hierarchical branched CNF structures, and develop a classification system encompassing measurements at multiple size ranges from micro- to nanoscale to fully characterize and distinguish CNF samples.
Journal articles
Use of enzymes for reduction in refining energy - laboratory
Use of enzymes for reduction in refining energy - laboratory studies, TAPPI JOURNAL, November 2006
Journal articles
Magazine articles
Editorial: Transform presentations to TAPPI Journal research papers by following basic steps, TAPPI Journal August 2024
ABSTRACT: Very often, important research findings are communicated in presentation form at industry conferences like those TAPPI holds. While this is a great way to highlight your work, it has some limitations when compared to a peer-reviewed TAPPI Journal paper. Presentations are limited to a specific event, while publishing papers in a peer-reviewed journal means that your work becomes part of scientific literature that is available to a broader audience. Also, a research paper allows for a more detailed explanation of the methods, data, and conclusions than the time-constrained format of a presentation.
Journal articles
Magazine articles
Production and characterization of furanic bio-oil from Kawayan kiling (Bambusa vulgaris Schrad ex. Wendl) using molten citric acid in an open system, TAPPI Journal August 2024
ABSTRACT: The burning of fossil fuels poses many threats to the environment. These predicaments have led to a continuous search for alternative sources and production of energy, and biomass is considered the most abundant renewable energy source. In this study, the potential to produce furanic bio-oil from the cellulose of Bambusa vulgaris was explored. The proximate chemical analysis of bamboo was determined using TAPPI Standards. Cellulose was isolated through dewaxing, delignification, and alkaline treatments. The furanic bio-oil was produced by mixing cellulose and citric acid in a solvent-free environment. The effects of the digestion time (120 min, 180 min, and 240 min) on the yield and characteristics were determined. The chemical compositions were determined using Fourier transform infrared (FTIR) spectroscopy and gas chromatography-mass spectrometry (GCMS). B. vulgaris has the following chemical composition: alpha-cellulose (57.42 ± 0.40), holocellulose (78.84 ± 0.52), lig-nin (28.85 ± 0.17), hot water extractives (3.99 ± 0.08), organic extractives (0.77 ± 0.04), ash (4.67 ± 0.02), and moisture (12.98 ± 0.22). The bio-oil yield was affected by the digestion time. The highest yield was obtained at 180 min, followed by 120 min, and 240 min with 88.59%, 59.28%, and 49.96%, respectively. The peaks in the FTIR spectra corresponded to the compounds determined by the GCMS analysis. The dominant chemicals were furans (29.19%), ketones (26.31%), and carboxylic acids (19.26%). The bio-oil obtained at 180-min digestion time has the following properties: sulfur content (0.032 wt%), kinematic viscosity (1.03 mm2/s), specific gravity (0.925), copper corrosion test (No. 1a), pH (2.753), and water content (not detected). Overall, the obtained values from the properties and chemical characterization can be the basis for investigating its performance for biofuel production and utilization. This study is aligned with the Bamboo Industry’s Strategic Science and Technology Plan for the Philippines to develop other value-added products from bamboo and to achieve Sustainable Development Goal 7 (SDG 7) as determined by the United Nations.
Journal articles
Magazine articles
Sulfur makeup in an unbleached kraft pulp mill, TAPPI Journal August 2024
ABSTRACT: Sodium sesquisulfate or “sesqui” (Na3H(SO4)2) is a by-product of chlorine dioxide production at kraft pulp mills. It is typically used for sodium and sulfur makeup in the liquor loop. Mondi Hinton Inc. (MHI) in Hinton, AB, Canada, was converting from bleached to unbleached kraft pulp production and was thus losing this source of makeup. The only option that was readily available as a substitute was sodium hydrosulfide (NaHS), which was cost prohibitive. Other options such as sodium sulfate (Na2SO4), emulsified sulfur, sulfuric acid (H2SO4), and sodium bisulfite (NaHSO3) were compared. The mill concluded that pelletized sulfur plus sodium hydroxide or “caustic soda” (NaOH) was the best option. Laboratory-scale experiments showed that pelletized sulfur dissolved in white liquor (WL). A mill-scale trial revealed that pelletized sulfur added to a causticizer had no adverse impacts on the downstream pressure filters or kiln operation. The sulfur reacted to produce polysulfide upstream of the WL storage tank, giving the liquor an orange hue. This polysulfide appeared to partially degrade into thiosulfate before being fed to the digester. The heavy black liquor (HBL) sulfur:sodium (S:Na) ratio did not change significantly, even though the sulfur/soda addition location was upstream of the original one. In addition, other properties such as liquor heating value and elemental analysis did not significantly change. Due to polysulfide/thiosulfate concentration in the white liquor, it was determined that the carbon steel equipment was at risk for corrosion. During the annual turnaround that occurred eight months after the addition of sulfur was started, the wash zone of the digester showed no signs of thinning/damage. The mill has been running exclusively with pelletized sulfur for 22 months (as of August 2024), realizing significant cost savings compared to the use of NaHS or other sulfur/soda addition options.
Journal articles
A roadmap for future papermakers: Dr. Peter W. Hart’s TAPPI Journal contributions, TAPPI Journal December 2024
ABSTRACT: Dr. Peter W. Hart’s passing earlier this year, many of his fellow TAPPI Journal Editorial Board members, peers, and colleagues have reflected on the lasting significance of his contributions to TAPPI and the industry at large. In this special December tribute issue, we have compiled some of Peter’s past contributions to TAPPI Journal as selected by those individuals familiar with his research. Many of the papers highlight Peter’s dedication to collaborative work.